Chapter 4. Switch Realization

4.1. Switch applications Single-, two-, and four-quadrant switches. Synchronous rectifiers

4.2. A brief survey of power semiconductor devices
 Power diodes, MOSFETs, BJTs, IGBTs, and thyristors

4.3. Switching loss

4.4. Summary of key points
SPST (single-pole single-throw) switches

SPST switch, with voltage and current polarities defined

All power semiconductor devices function as SPST switches.

Buck converter
Realization of SPDT switch using two SPST switches

- A nontrivial step: two SPST switches are not exactly equivalent to one SPDT switch
- It is possible for both SPST switches to be simultaneously ON or OFF
- Behavior of converter is then significantly modified — discontinuous conduction modes (chapter 5)
- Conducting state of SPST switch may depend on applied voltage or current — for example: diode
Quadrants of SPST switch operation

A single-quadrant switch example:
ON-state: $i > 0$ OFF-state: $v > 0$
Some basic switch applications

Single-quadrant switch

Current-bidirectional two-quadrant switch

Voltage-bidirectional two-quadrant switch

Four-quadrant switch
4.1.1. Single-quadrant switches

- **Active switch**: Switch state is controlled exclusively by a third terminal (control terminal).

- **Passive switch**: Switch state is controlled by the applied current and/or voltage at terminals 1 and 2.

- **SCR**: A special case — turn-on transition is active, while turn-off transition is passive.

- **Single-quadrant switch**: on-state $i(t)$ and off-state $v(t)$ are unipolar.
The diode

A passive switch

- Single-quadrant switch:
 - can conduct positive on state current
 - can block negative off state voltage
 - provided that the intended on-state and off-state operating points lie on the diode i-v characteristic, then switch can be realized using a diode
The Bipolar Junction Transistor (BJT) and the Insulated Gate Bipolar Transistor (IGBT)

- An active switch, controlled by terminal C

- Single-quadrant switch:
 - can conduct positive on state current
 - can block positive off-state voltage
 - provided that the intended on-state and off-state operating points lie on the transistor i-v characteristic, then switch can be realized using a BJT or IGBT
The Metal-Oxide Semiconductor Field Effect Transistor (MOSFET)

- An active switch, controlled by terminal C

- Normally operated as single quadrant switch:
 - can conduct positive on-state current (can also conduct negative current in some circumstances)
 - can block positive off-state voltage
 - provided that the intended on state and off-state operating points lie on the MOSFET i-v characteristic, then switch can be realized using a MOSFET
Realization of switch using transistors and diodes

Buck converter example

Switch A: transistor
Switch B: diode

SPST switch operating points
Realization of buck converter using single-quadrant switches
4.1.2. Current-bidirectional two-quadrant switches

- Usually an active switch, controlled by terminal C
- Normally operated as two quadrant switch:
 - can conduct positive or negative on-state current
 - can block positive off-state voltage
 - provided that the intended on state off-state operating points lie on the composite i-v characteristic, then sv can be realized as shown
Two quadrant switches
MOSFET body diode

Power MOSFET characteristics

Power MOSFET, and its integral body diode

Use of external diodes to prevent conduction of body diode
A simple inverter

\[v_0(t) = (2D - 1) V_g \]
Inverter: sinusoidal modulation of D

\[v_0(t) = (2D - 1) \ V_g \]

Sinusoidal modulation to produce ac output:

\[D(t) = 0.5 + D_m \sin (\omega t) \]

The resulting inductor current variation is also sinusoidal:

\[i_L(t) = \frac{v_0(t)}{R} = (2D - 1) \ \frac{V_g}{R} \]

Hence, current-bidirectional two-quadrant switches are required.
The dc-3Øac voltage source inverter (VSI)

Switches must block dc input voltage, and conduct ac load current.
Bidirectional battery charger/discharger

A dc-dc converter with bidirectional power flow.
4.1.3. Voltage-bidirectional two-quadrant switches

- Usually an active switch, controlled by terminal C
- Normally operated as two quadrant switch:
 - can conduct positive on state current
 - can block positive or negative off-state voltage
 - provided that the intended on state and off-state operating points lie on the composite i-v characteristic, then switch can be realized as shown
 - The SCR is such a device, without controlled turn-off

![Diode Circuit Diagram](image)

BJT / series \[\text{diode realization}\] \[\text{instantaneous i-v characteristic}\]
Two-quadrant switches

- Off (diode blocks voltage)
- Off (transistor blocks voltage)

Switch on-state current
Switch off-state voltage
A dc-3øac buck-boost inverter

Requires voltage-bidirectional two-quadrant switches.

Another example: boost-type inverter, or current-source inverter (CSI).
4.1.4. Four-quadrant switches

- Usually an active switch, controlled by terminal C
- can conduct positive or negative on-state current
- can block positive or negative off-state voltage
Three ways to realize a four-quadrant switch
A 3Øac-3Øac matrix converter

- All voltages and currents are ac; hence, four-quadrant switches are required.
- Requires nine four-quadrant switches
4.1.5. Synchronous rectifiers

Replacement of diode with a backwards-connected MOSFET, to obtain reduced conduction loss

Ideal switch

Conventional diode rectifier

MOSFET as synchronous rectifier instantaneous \(i \)-\(v \) characteristic

\(i \)

\(on \)

\(off \)

\(reverse \) conduction

\(v \)
Buck converter with synchronous rectifier

- MOSFET Q2 is controlled to turn on when diode would normally conduct
- Semiconductor conduction loss can be made arbitrarily small, by reduction of MOSFET on resistances
- Useful in low-voltage high-current applications